By John Addison (10/12/10)
AT&T (T), Xcel Energy (XEL), Johnson Controls (JCI), Southern California Edison (SCE), and New York Power Authority have all ordered Ford Transit Connect Electric. These pure battery-electric vans have an electric charge range of 80 miles and are a great fit for many fleet, small business, and delivery applications. Although Nissan and Chevrolet are the center of EV attention, fleets are the early adapters of new vehicles.
In the United States, fleets control some 14 million vehicles. Some fleets placed initial orders for 10 or 20 Transit Connect Electrics; bigger orders could follow in 2011. JCI has ordered 20 Transit Connect Electrics to be part of its global fleet of 19,000 vehicles.
At the heart of these compact Ford electric vans are 28 kWh lithium battery packs made by a joint venture of SAFT and Johnson Controls, #1 maker of automotive batteries, a tier 1 auto supplier, and leader in building efficiency. The other day, I interviewed Mary Ann Wright, Vice President of Global Technology and Innovation Accelerator for Johnson Controls, to better understand the future of electric vehicles and advanced batteries. Johnson Controls is one of the 100 largest corporations in the U.S., with over 60,000 employees.
Partnerships are critical to success in electric vehicles. As the world’s largest manufacturer of lead-acid batteries, Johnson Controls (JCI) works closely with its material suppliers. To accelerate development of lithium batteries, R&D and manufacturing is a joint venture of Johnson Controls – SAFT (JCS).
For speed to market, Ford has partnered with Azure Dynamics (AZD), who integrates their drive system and the Johnson Controls – SAFT (JCS) lithium batteries into the Transit Connect chassis, which is also available in gasoline and CNG versions. My test drive of the Ford Transit Connect Electric demonstrated that it is practical for many fleet applications. JCI owns over 3% of AZD.
Since 2007, Ford and Johnson Controls have worked with leading electric utilities and EPRI. In 2007, Ford announced a partnership with Southern California Edison, the electric utility with the nation’s largest and most advanced electric vehicle fleet. The partnership is designed to explore ways to make plug-in hybrids more accessible to consumers, reduce petroleum-related emissions and understand issues related to connectivity between vehicles and the electric grid. For the 3-year study, Ford Escape Plug-in Hybrids have been heavily used. It will not be until 2012, that consumers can order plug-in hybrids from Ford.
Vice President Wright told me that driving lithium battery packs down in price from industry numbers like today’s $700/kWh to a future of $200/kWh would price electric car on par with cars powered with internal combustion engines. Progress is being made at every level. Manufacturing volume will be a key driver.
The drive for cost reduction will greatly benefit consumers and fleets; cost reduction initiatives will be a mixed blessing for battery suppliers. Last year, Ford had announced that JCS would supply the lithium batteries for its 2012 Plug-in Hybrid which Clean Fleet Report forecasts will be a new Ford Focus PHEV. Now JCS will not be the supplier. Ford has decided to make its own battery packs, and have different manufacturers compete to supply the cells. JCS is the winner for the Transit Connect Electric; LG Chem’s Compact Power is the winner for the Ford Focus Electric; competition has been intense for the PHEV. It appears that Ford has selected the PHEV cell supplier, but has not yet made the announcement.
In this decade, Nancy Gioia, Director Ford Global Electrification, told me that she would like to see Ford reach $250/kWh and have hybrid and electric vehicles represent 10 to 25% of total Ford sales. Ford is making no guarantees for such an ambitious program. Ford lithium cell providers are dealing with a tough customer that could deliver high volumes and continuous improvement.
For $28 billion Johnson Controls, Ford is an important customer, but only one customer. BMW and Mercedes are already using JCS lithium batteries in hybrids. In this decade, JCI sees the biggest opportunity in advanced start-stop, mild, and full hybrid vehicles; with pure battery-electrics being a smaller opportunity. By 2025, Ms. Wright only forecasts 3% of cars being full hybrid and electric.
Look inside a hybrid car and you will see two types of batteries: advanced nickel metal or lithium batteries for the electric motor and a 12V lead-acid battery for the auxiliaries. Lead-acid batteries will continue to be used in hundreds of millions of vehicles including hybrid and those with only an ICE. Johnson Controls continues to advance lead-acid batteries with new VARTA Start-Stop technology. These new batteries are optimal for the micro hybrids now on the road in Europe in over a million cars and coming to the USA. Turning off an engine reduces fuel consumption up to 12% when a vehicle is stationary, such as red lights and rush-hour gridlock. BMW was first to use the micro hybrid approach, now Volkswagen, Audi and others are including start-stop in some models.
When I toured Johnson Controls in Milwaukee, Wisconsin, last year, advancements in both lead-acid and lithium batteries were conspicuous. JCI told me that 98% of the materials in both battery technologies are recycled. As a world leader in energy efficient buildings, Johnson Controls will have the opportunity to repurpose lithium batteries in stationary applications before materials recycling.
Improved battery technology will continue to enable vehicles to use less fuel per mile, show us bluer skies with less air pollution, and reduce our current 97% dependency on petroleum as the only way to fuel a car.