Miles per Gallon Record MPG

| | ,

By John Addison (8/28/07) The Loire Valley in France

The Loire Valley in France brings images of magnificent castles, breathtaking landscape, superb wine, and driving 10,705 miles per gallon (3,789 km/l). A team of students at the La Joliverie in Loire won the 2003 Shell Eco-Marathon race with this remarkable fuel economy. Yes, you read that right – over 10,000 mpg and the fuel was gasoline. It was not an electric vehicle. It was not even a hybrid. The vehicle was shaped for minimal wind resistance.

The vehicle was also built with new materials that are lighter, stronger, and available in some new models now in car showrooms. When you buy your next vehicle, you can get 40 miles per gallon (mpg), not 14 mpg, by selecting a vehicle that is lighter and more aerodynamic. Some people want you to think that you need to wait years before you can get a car with great mileage. This is not true. You can get over 40 miles per gallon today. You do not need to wait for future technologies.

By going on an energy diet we can have healthy cities, be energy independent, and stop global warming. This can be done with modest annual improvements. We could cut vehicle greenhouse gas emissions by 60% by improving mileage 4% annually for 22 years.

We have one global trend towards fuel and energy efficiency and a more powerful force towards increased consumption. Our future depends on fuel and energy efficiency being the winner. Amory Lovins and the Rocky Mountain Institute have looked at the numbers in detail. They calculate that moving our typical car with its internal combustion engine wastes over 90% of the energy content in the gasoline used. 90% is wasted moving the vehicle and driver. What if we look at the energy efficiency of just moving the driver? 99% waste! Only one percent of the energy in the gasoline is actually used to move the person.

Americans spend an extra $3 billion on fuel because vehicles are heavier than they were in 1960. The world’s drivers consume an extra 39 million gallons each year for each pound of added vehicle weight.

Cars need to go on a diet. SUVs need a crash diet. A light weight auto requires a lighter engine and powertrain, which in turn requires less fuel weight. To achieve more miles per gallon carry less weight. If you use a big SUV like the GM Envoy XL, your official EPA mileage is 15/19. Your mileage may vary (as in worse). If you use a much lighter GM Chevrolet Cobalt M-5, your EPA mileage is an improved 25/34. Vehicles can be better designed. Minor reductions in weight and drag, can improve mileage 14 to 53% and only raise prices by $168 to $217. Winning the Oil Endgame

In Europe, the Renault Clio uses recycled plastic for 10 percent of the total vehicle weight. Recycling helps the environment. Use of plastic reduces weight and improves fuel economy. The VW Lupo 3L TDI achieves 78 miles per gallon. The VW is small, lightweight, and uses an efficient diesel engine.

A new study determines that the amount of aluminum used in new European cars has risen from 50 kg in 1990 to 132 kg in 2005 and is predicted to grow by another 25 kg by 2010. The two million tons of aluminum components were put in European cars saved one billion liters of fuel annually and 40 million tons of CO2 emissions over the lifespan of the vehicles.

No more heavy metal. Your car is probably made with steel. Aluminum makes vehicles lighter. Market leader Toyota bought 5.9% of Izuzu so that Toyota could make better use of aluminum. In 2012, a joint venture between Toyota and Izuzu will start producing a new light-weight aluminum engine. Green Car Congress

Carbon fiber makes vehicles even lighter. Carbon fiber requires half the weight and gives better protection. My bicycle is carbon fiber, making it easier to get up hills. My golf clubs using carbon fiber; unfortunately, nothing can help my golf game.

Sexy exotic cars are made with carbon fiber. GM’s Ultralite, built in 1992, had a carbon-fiber-skin for the chassis and body panels. The weight was only 420 pounds including the doors. Auto makers know how to make a car that gets over 100 mpg, even without the hybrid technology which we will review. Auto makers need a business case to make the change.

VW developed an experimental two-seater that got 240 mpg. Critics point out that the 0.3-liter 8.5-hp one-cylinder engine could not rapidly accelerate on to a freeway. Millions of vehicles do not need such acceleration. Many fleets, from college campuses to city parking inspectors, need vehicles with modest speeds that can be parked in tight spaces.

The Toyota Prius is more aerodynamic than a Chevrolet Corvette. Last week I met with Prius drivers that are getting 60 mpg in real driving conditions. In addition to being aerodynamic, the Prius uses low rolling resistance tires. You can even improve mileage with your current vehicle by keeping the tires fully inflated, thereby lowering rolling resistance and increasing mileage.

Does your family or household own more than one vehicle? If so, use most often the vehicle that consumes the least gas. It is a no-brainer. That is your main car. My wife and I share the high mileage hybrid. It puts on the most miles. The other sedan, which still gets good mileage, is used only on days when we both have destinations in opposite directions. For the most part, it is a back-up car that stays parked in the garage.

When you buy a new car select one that gets at least 40 miles per gallon (or get an electric vehicle). Most likely the high mileage car will be aerodynamic, lighter, safer, and use low rolling resistance tires.

Photo of author

John Addison

John Addison is the founder of Clean Fleet Report and continues to occasionally contribute to the publication. He is the author of Save Gas, Save the Planet and many articles at Clean Fleet Report. He has taught courses at U.C. Davis and U.C. Santa Cruz Extension and has delivered more than 1,000 speeches, workshop and moderated conference panels in more than 20 countries.
Previous

PG&E’s Has Largest Natural Gas Fleet in United States

Electric Buses with Hydrogen Fuel Cells at AC Transit

Next